Complex Analysis Solutions *

Mid-Semester 2012-2013
Problem 1

From the Cauchy integral formula we know that,
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Given any € > 0 by choosing r large, we get ’j—;f(lﬂ < €. Therefore j—;f(l) =
0. Using similar calculation one can show (i—nnf(z) =0forany k > 3 and z € C.

Problem 2

o0
Given f(z) = Y a,2" converges whenever |z| < 1 and f(1) € R for n > 2. To
n=0

show that f(R) C R, it is enough to show that all a, are real. Because f is
continuous, we have

4o = lim f(1) = f(0) € R.
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Define fi.(z) = M, for k > 1. Notice that f(0) = a; and fx(z) =
anikp2” for k > 1. We prove that a; € R for £ > 1 by using induction. We
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n=0

have already shown that ag € R. If a1 € R, then from the definition fk(%) eR
for every m > 2. Also notice that fi is continuous in the set {z : |z| < 1}.
Therefore a, = f(0) € R.

*Send an email to tulasi.math@gmail.com for any clarifications or to report any errors.



Problem 3

The stereographic map evaluated at the point z is given by z = fj;’ff Y =
2
Q‘ZQJ(FZI),z = tl‘%: The points ¢ and oo are mapped to (0,1,0) and (0,0, 1)

respectively. Therefore the stereographic distance d(i,00) = v/02 + 12+ 12 =
V2. In general, the stereographic distance between two points z, w is given by
2|z — w|

d(z,w) = .
(zw) \/1 + |z|2\/1 + |w|?

Problem 4

Denote B,.(a) be the ball of radius r with center at a. We will first show the
mean value property for polynomials of the form P(z) = 2™ for n > 1. Recall
the Jacobian for transforming the real and imaginary co-ordinates to polar co-
ordinates (z + iy — re?) is r. Therefore,
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Therefore if P(z) = Y axz*, then
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We now have the mean value property for any polynomial at the point 0. Now
to show the mean value property at any arbitrary point a, shift the origin to
a and obtain a corresponding new polynomial. Because Lebesgue measure is
translation invariant, the mean value of the original polynomial at the point a
is same as the mean value of the new polynomial at 0. Hence the mean value
property holds for every polynomial at every point.

Problem 5

Given that f, g, fg € H(Q), where § is a connected open set. Denote h = fg.
If g # 0, then the zero set of g is a discrete set. Hence there is a open set V' C )

where ¢ doesn’t vanish. On the set V, the function % is well-defined. Because

h,g € H(V), we have % = f € H(V). Therefore Re(f) = f + f € H(2). From
open mapping theorem we have that the image of any open set under a non-
constant holomorphic mapping is also open. Any subset of real line is not open
in complex plane. Hence the Re(f) is constant on V. Similarly, we can show
that I'm(f) is constant on V. Therefore, f is constant on V' and is constant on

Q.



Problem 6

Let f is not a constant function. Let there is z € C, such that f(z) # f(c). Let
U be a neighborhood of ¢ containing z. Then, f(U) is not open, because any
neighborhood of f(c¢) contains a number whose absolute valued exceeds |f(c)],
but it was given that |f(z)| < |f(c)| for any z € C. Therefore from the open
mapping theorem it follows that f is a constant function.

Problem 7
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Let fo(2) =[] 1+ & — ;—z) and f(z) = [[(1+ % — Z—z) fns are all analytic
k=1 n=1

functions. Fix any compact set K C C, then K is bounded (say by M). For

any z € K and n > 1, we get
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The functions are uniformly bounded in any compact set K. By similar argu-
ments, it can be shown that f,, converge point wise. From these facts one can
verify the hypothesis of Morera’s theorem in the disk where {z : |2| < M} The
zeros of 1+ % — Z—z are 5 (1£+/1+ 4n). Therefore the set of zeros of the given
infinite product are {5 (1 ++v/1+4n):n € N}.

Problem 8

Given f(z) = 3:2’ f is a rational function and is holomorphic on the set where

the denomiator is non-zero. Therefore f is holomorphic on C\{2i}.

(22 —i)?, 4]z + 1+ 4Re(iz)

(2 + 2i)? = |z]2 + 4+ 4Re(iz) -

The numerator of the right hand side of 1 is smaller than (equal to) the denom-
inator whenever |z| < 1(=1). Therefore f maps U into U (T into T).

Letting f(z) = w, we get z = 22EL Therefore f~!(2) = 22tL. By similar
computation as in 1, we get
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Therefore f~! also maps U into U and T into 7. Combining the results for f
and f~! we see that f maps U onto U and T onto 7.

Remark: The above property holds for any map of the form f(z) =
whenever a € U.
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