
Complex Analysis Solutions ∗

Mid-Semester 2012-2013

Problem 1

From the Cauchy integral formula we know that,

d3

dz3
f(1) =

(−1)3

3!2πi

∫
|z−1|=r

f(z)

(z − 1)4
dz.

For any r > 2, we have

∣∣ d3
dz3

f(1)
∣∣ ≤ 1

12π

∫
|z−1|=r

|f(z)|
|z − 1|4

|dz| ≤ 1

12π

∫
|z−1|=r

1 + |z|2

|z − 1|4
|dz|

≤ 1

12π

∫
|z−1|=r

2 + |z − 1|2

|z − 1|4
|dz|

=
1

12π

(2 + r2)2πr

r4

Given any ε > 0 by choosing r large, we get
∣∣ d3
dz3 f(1)

∣∣ < ε. Therefore d3

dz3 f(1) =

0. Using similar calculation one can show dn

dzn f(z) = 0 for any k ≥ 3 and z ∈ C.

Problem 2

Given f(z) =
∞∑
n=0

anz
n converges whenever |z| < 1 and f( 1

n ) ∈ R for n ≥ 2. To

show that f(R) ⊂ R, it is enough to show that all an are real. Because f is
continuous, we have

a0 = lim
n→∞

f(
1

n
) = f(0) ∈ R.

Define fk(z) = fk−1(z)−fk−1(0)
z , for k ≥ 1. Notice that fk(0) = ak and fk(z) =

∞∑
n=0

an+kz
n for k ≥ 1. We prove that ak ∈ R for k ≥ 1 by using induction. We

have already shown that a0 ∈ R. If ak−1 ∈ R, then from the definition fk( 1
n ) ∈ R

for every n ≥ 2. Also notice that fk is continuous in the set {z : |z| < 1}.
Therefore ak = fk(0) ∈ R.

∗Send an email to tulasi.math@gmail.com for any clarifications or to report any errors.
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Problem 3

The stereographic map evaluated at the point z is given by x = 2Re(z)
|z|2+1 , y =

2Im(z)
|z|2+1 , z = |z|2−1

|z|2+1 . The points i and ∞ are mapped to (0, 1, 0) and (0, 0, 1)

respectively. Therefore the stereographic distance d(i,∞) =
√

02 + 12 + 12 =√
2. In general, the stereographic distance between two points z, w is given by

d(z, w) =
2|z − w|√

1 + |z|2
√

1 + |w|2
.

Problem 4

Denote Br(a) be the ball of radius r with center at a. We will first show the
mean value property for polynomials of the form P (z) = zn for n ≥ 1. Recall
the Jacobian for transforming the real and imaginary co-ordinates to polar co-
ordinates (x+ iy → reiθ) is r. Therefore,

1

πr2

∫
Br(0)

zndm(z) =
1

πr2

r∫
0

2π∫
0

rneinθdθrdr =
1

πr2

r∫
0

rn+1dr

2π∫
0

einθdθ = 0 = P (0).

Therefore if P (z) =
n∑
k=0

akz
k, then

1

πr2

∫
Br(0)

P (z)dm(z) =
1

πr2

∫
Br(0)

n∑
k=0

akz
kdm(z)

=
1

πr2

∫
Br(0)

a0dm(z) +

n∑
k=1

∫
Br(0)

zkdm(z)

= a0 = P (0).

We now have the mean value property for any polynomial at the point 0. Now
to show the mean value property at any arbitrary point a, shift the origin to
a and obtain a corresponding new polynomial. Because Lebesgue measure is
translation invariant, the mean value of the original polynomial at the point a
is same as the mean value of the new polynomial at 0. Hence the mean value
property holds for every polynomial at every point.

Problem 5

Given that f, g, fg ∈ H(Ω), where Ω is a connected open set. Denote h = fg.
If g 6≡ 0, then the zero set of g is a discrete set. Hence there is a open set V ⊂ Ω
where g doesn’t vanish. On the set V , the function h

g is well-defined. Because

h, g ∈ H(V ), we have h
g = f ∈ H(V ). Therefore Re(f) = f + f ∈ H(Ω). From

open mapping theorem we have that the image of any open set under a non-
constant holomorphic mapping is also open. Any subset of real line is not open
in complex plane. Hence the Re(f) is constant on V . Similarly, we can show
that Im(f) is constant on V . Therefore, f is constant on V and is constant on
Ω.
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Problem 6

Let f is not a constant function. Let there is z ∈ C, such that f(z) 6= f(c). Let
U be a neighborhood of c containing z. Then, f(U) is not open, because any
neighborhood of f(c) contains a number whose absolute valued exceeds |f(c)|,
but it was given that |f(z)| ≤ |f(c)| for any z ∈ C. Therefore from the open
mapping theorem it follows that f is a constant function.

Problem 7

Let fn(z) =
n∏
k=1

(1 + z
k2 −

z2

k3 ) and f(z) =
∞∏
n=1

(1 + z
n2 − z2

n3 ). fns are all analytic

functions. Fix any compact set K ⊂ C, then K is bounded (say by M). For
any z ∈ K and n ≥ 1, we get

|1 +
z

n2
− z2

n3
| ≤ |1 +

|z|
n2

+
|z|2

n3
|

≤ 1 +
M

n2
+
M2

n3

≤ e
M
n2 +M2

n3 .

Therefore,

|
∞∏
n=1

(1 +
z

n2
− z2

n3
)| ≤ e

∞∑
n=1

( M
n2 +M2

n3 )
<∞.

The functions are uniformly bounded in any compact set K. By similar argu-
ments, it can be shown that fn converge point wise. From these facts one can
verify the hypothesis of Morera’s theorem in the disk where {z : |z| < M} The

zeros of 1 + z
n2 − z2

n3 are n
2 (1±

√
1 + 4n). Therefore the set of zeros of the given

infinite product are {n2 (1±
√

1 + 4n) : n ∈ N}.

Problem 8

Given f(z) = 2z−i
2+iz . f is a rational function and is holomorphic on the set where

the denomiator is non-zero. Therefore f is holomorphic on C\{2i}.

|f(z)|2 =
∣∣ (2z − i)2
(z + 2i)2

∣∣ =
4|z|2 + 1 + 4Re(iz)

|z|2 + 4 + 4Re(iz)
.

The numerator of the right hand side of 1 is smaller than (equal to) the denom-
inator whenever |z| < 1(= 1). Therefore f maps U into U (T into T ).
Letting f(z) = w, we get z = 2w+i

2−iw . Therefore f−1(z) = 2z+i
2−iz . By similar

computation as in 1, we get

|f−1(z)|2 =
4|z|2 + 1− 4Re(iz)

|z|2 + 4− 4Re(iz)
.

Therefore f−1 also maps U into U and T into T . Combining the results for f
and f−1 we see that f maps U onto U and T onto T .

Remark: The above property holds for any map of the form f(z) = z−a
1−az ,

whenever a ∈ U .
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