Complex Analysis Solutions *

Mid-Semester 2012-2013

Problem 1

From the Cauchy integral formula we know that,

$$
\frac{d^{3}}{d z^{3}} f(1)=\frac{(-1)^{3}}{3!2 \pi i} \int_{|z-1|=r} \frac{f(z)}{(z-1)^{4}} d z .
$$

For any $r>2$, we have

$$
\begin{aligned}
\left|\frac{d^{3}}{d z^{3}} f(1)\right| \leq \frac{1}{12 \pi} \int_{|z-1|=r} \frac{|f(z)|}{|z-1|^{4}}|d z| & \leq \frac{1}{12 \pi} \int_{|z-1|=r} \frac{1+|z|^{2}}{|z-1|^{4}}|d z| \\
& \leq \frac{1}{12 \pi} \int_{|z-1|=r} \frac{2+|z-1|^{2}}{|z-1|^{4}}|d z| \\
& =\frac{1}{12 \pi} \frac{\left(2+r^{2}\right) 2 \pi r}{r^{4}}
\end{aligned}
$$

Given any $\epsilon>0$ by choosing r large, we get $\left|\frac{d^{3}}{d z^{3}} f(1)\right|<\epsilon$. Therefore $\frac{d^{3}}{d z^{3}} f(1)=$ 0 . Using similar calculation one can show $\frac{d^{n}}{d z^{n}} f(z)=0$ for any $k \geq 3$ and $z \in \mathbb{C}$.

Problem 2

Given $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ converges whenever $|z|<1$ and $f\left(\frac{1}{n}\right) \in \mathbb{R}$ for $n \geq 2$. To show that $f(\mathbb{R}) \subset \mathbb{R}$, it is enough to show that all a_{n} are real. Because f is continuous, we have

$$
a_{0}=\lim _{n \rightarrow \infty} f\left(\frac{1}{n}\right)=f(0) \in \mathbb{R}
$$

Define $f_{k}(z)=\frac{f_{k-1}(z)-f_{k-1}(0)}{z}$, for $k \geq 1$. Notice that $f_{k}(0)=a_{k}$ and $f_{k}(z)=$ $\sum_{n=0}^{\infty} a_{n+k} z^{n}$ for $k \geq 1$. We prove that $a_{k} \in \mathbb{R}$ for $k \geq 1$ by using induction. We have already shown that $a_{0} \in \mathbb{R}$. If $a_{k-1} \in \mathbb{R}$, then from the definition $f_{k}\left(\frac{1}{n}\right) \in \mathbb{R}$ for every $n \geq 2$. Also notice that f_{k} is continuous in the set $\{z:|z|<1\}$. Therefore $a_{k}=f_{k}(0) \in \mathbb{R}$.

[^0]
Problem 3

The stereographic map evaluated at the point z is given by $x=\frac{2 \operatorname{Re}(z)}{|z|^{2}+1}, y=$ $\frac{2 \operatorname{Im}(z)}{|z|^{2}+1}, z=\frac{|z|^{2}-1}{|z|^{2}+1}$. The points i and ∞ are mapped to $(0,1,0)$ and $(0,0,1)$ respectively. Therefore the stereographic distance $d(i, \infty)=\sqrt{0^{2}+1^{2}+1^{2}}=$ $\sqrt{2}$. In general, the stereographic distance between two points z, w is given by

$$
d(z, w)=\frac{2|z-w|}{\sqrt{1+|z|^{2}} \sqrt{1+|w|^{2}}}
$$

Problem 4

Denote $B_{r}(a)$ be the ball of radius r with center at a. We will first show the mean value property for polynomials of the form $P(z)=z^{n}$ for $n \geq 1$. Recall the Jacobian for transforming the real and imaginary co-ordinates to polar coordinates $\left(x+i y \rightarrow r e^{i \theta}\right)$ is r. Therefore,
$\frac{1}{\pi r^{2}} \int_{B_{r}(0)} z^{n} d m(z)=\frac{1}{\pi r^{2}} \int_{0}^{r} \int_{0}^{2 \pi} r^{n} e^{i n \theta} d \theta r d r=\frac{1}{\pi r^{2}} \int_{0}^{r} r^{n+1} d r \int_{0}^{2 \pi} e^{i n \theta} d \theta=0=P(0)$.
Therefore if $P(z)=\sum_{k=0}^{n} a_{k} z^{k}$, then

$$
\begin{aligned}
\frac{1}{\pi r^{2}} \int_{B_{r}(0)} P(z) d m(z) & =\frac{1}{\pi r^{2}} \int_{B_{r}(0)} \sum_{k=0}^{n} a_{k} z^{k} d m(z) \\
& =\frac{1}{\pi r^{2}} \int_{B_{r}(0)} a_{0} d m(z)+\sum_{k=1}^{n} \int_{B_{r}(0)} z^{k} d m(z) \\
& =a_{0}=P(0)
\end{aligned}
$$

We now have the mean value property for any polynomial at the point 0 . Now to show the mean value property at any arbitrary point a, shift the origin to a and obtain a corresponding new polynomial. Because Lebesgue measure is translation invariant, the mean value of the original polynomial at the point a is same as the mean value of the new polynomial at 0 . Hence the mean value property holds for every polynomial at every point.

Problem 5

Given that $f, g, \bar{f} g \in H(\Omega)$, where Ω is a connected open set. Denote $h=\bar{f} g$. If $g \not \equiv 0$, then the zero set of g is a discrete set. Hence there is a open set $V \subset \Omega$ where g doesn't vanish. On the set V, the function $\frac{h}{g}$ is well-defined. Because $h, g \in H(V)$, we have $\frac{h}{g}=\bar{f} \in H(V)$. Therefore $\operatorname{Re}(f)=f+\bar{f} \in H(\Omega)$. From open mapping theorem we have that the image of any open set under a nonconstant holomorphic mapping is also open. Any subset of real line is not open in complex plane. Hence the $\operatorname{Re}(f)$ is constant on V. Similarly, we can show that $\operatorname{Im}(f)$ is constant on V. Therefore, f is constant on V and is constant on Ω.

Problem 6

Let f is not a constant function. Let there is $z \in \mathbb{C}$, such that $f(z) \neq f(c)$. Let U be a neighborhood of c containing z. Then, $f(U)$ is not open, because any neighborhood of $f(c)$ contains a number whose absolute valued exceeds $|f(c)|$, but it was given that $|f(z)| \leq|f(c)|$ for any $z \in \mathbb{C}$. Therefore from the open mapping theorem it follows that f is a constant function.

Problem 7

Let $f_{n}(z)=\prod_{k=1}^{n}\left(1+\frac{z}{k^{2}}-\frac{z^{2}}{k^{3}}\right)$ and $f(z)=\prod_{n=1}^{\infty}\left(1+\frac{z}{n^{2}}-\frac{z^{2}}{n^{3}}\right) . f_{n}$ s are all analytic functions. Fix any compact set $K \subset \mathbb{C}$, then K is bounded (say by M). For any $z \in K$ and $n \geq 1$, we get

$$
\begin{aligned}
\left|1+\frac{z}{n^{2}}-\frac{z^{2}}{n^{3}}\right| & \leq\left|1+\frac{|z|}{n^{2}}+\frac{|z|^{2}}{n^{3}}\right| \\
& \leq 1+\frac{M}{n^{2}}+\frac{M^{2}}{n^{3}} \\
& \leq e^{\frac{M}{n^{2}}+\frac{M^{2}}{n^{3}}} .
\end{aligned}
$$

Therefore,

$$
\left|\prod_{n=1}^{\infty}\left(1+\frac{z}{n^{2}}-\frac{z^{2}}{n^{3}}\right)\right| \leq e^{\sum_{n=1}^{\infty}\left(\frac{M}{n^{2}}+\frac{M^{2}}{n^{3}}\right)}<\infty
$$

The functions are uniformly bounded in any compact set K. By similar arguments, it can be shown that f_{n} converge point wise. From these facts one can verify the hypothesis of Morera's theorem in the disk where $\{z:|z|<M\}$ The zeros of $1+\frac{z}{n^{2}}-\frac{z^{2}}{n^{3}}$ are $\frac{n}{2}(1 \pm \sqrt{1+4 n})$. Therefore the set of zeros of the given infinite product are $\left\{\frac{n}{2}(1 \pm \sqrt{1+4 n}): n \in \mathbb{N}\right\}$.

Problem 8

Given $f(z)=\frac{2 z-i}{2+i z}$. f is a rational function and is holomorphic on the set where the denomiator is non-zero. Therefore f is holomorphic on $\mathbb{C} \backslash\{2 i\}$.

$$
|f(z)|^{2}=\left|\frac{(2 z-i)^{2}}{(z+2 i)^{2}}\right|=\frac{4|z|^{2}+1+4 \operatorname{Re}(i z)}{|z|^{2}+4+4 \operatorname{Re}(i z)}
$$

The numerator of the right hand side of 1 is smaller than (equal to) the denominator whenever $|z|<1(=1)$. Therefore f maps U into U (T into T).
Letting $f(z)=w$, we get $z=\frac{2 w+i}{2-i w}$. Therefore $f^{-1}(z)=\frac{2 z+i}{2-i z}$. By similar computation as in 1 , we get

$$
\left|f^{-1}(z)\right|^{2}=\frac{4|z|^{2}+1-4 \operatorname{Re}(i z)}{|z|^{2}+4-4 \operatorname{Re}(i z)}
$$

Therefore f^{-1} also maps U into U and T into T. Combining the results for f and f^{-1} we see that f maps U onto U and T onto T.

Remark: The above property holds for any map of the form $f(z)=\frac{z-a}{1-\bar{a} z}$, whenever $a \in U$.

[^0]: *Send an email to tulasi.math@gmail.com for any clarifications or to report any errors.

